

CJCTM Off-line Fine Filter Insert BM 27/27, used in CJCTM Filter Units for Symetro Gears

APPLICATION

The type BM fine filter insert is manufactured specially for CJCTM Filter units employed in cement mill gear applications, using either mineral or synthetic gear oils.

The BM insert is universal and is ideal in all types of CJCTM Filter Units mounted on FLS Symetro Gears.

FILTRATION CAPABILITY

All CJCTM Filter Inserts have a filtration degree of 3 μ m (micron) absolute (equiv. to 0.8 μ m nominal) i.e. 98.7 % of all solid particles >3 μ m and approx. 50 % of all particles >0.8 μ m are retained in each pass.

The dirt holding capacity of a new BM 27/27 filter insert is 4 litres, which is double the capacity of its predecessor, the A 27/27 filter insert.

The water absorption potential is up to 50% (i.e. $2,000 \text{ mL H}_20$) of the total contaminant holding capacity.

DIMENSIONS

The figures below are nominal.

Diameter: 27 cm Height: 27 cm Weight: 4 kg

COMPONENTS

CJCTM BM Fine Filter Inserts consist of bonded discs made from:

Wood cellulose Cotton linters Polyamin Foammaster Urethan glue

The anticipated increase in differential pressure ($\triangle P$), measured in **bar**, across one new BM 27/27 filter insert is:

FLOW	VISCOSITY				
	100 cSt	200 cSt	300 cSt	400 cSt	500 cSt
200 L/h	0.15	0.30	0.48	0.64	0.80
400 L/h	0.30	0.65	0.96	1.28	1.60
600 L/h	0.50	0.95	1.44	1.92	2.40
800 L/h	0.65	1.30	1.92	2.56	3.20

To calculate the total increase in differential pressure, divide the viscosity with the number of filter inserts in a filter housing.

As a result of its the new design the BM insert can successfully filter oils of high viscosity and consequently operate more efficiently at low oil temperatures.

